3.2.42 \(\int \sec ^{\frac {7}{2}}(c+d x) (b \sec (c+d x))^{3/2} \, dx\) [142]

Optimal. Leaf size=110 \[ \frac {3 b \tanh ^{-1}(\sin (c+d x)) \sqrt {b \sec (c+d x)}}{8 d \sqrt {\sec (c+d x)}}+\frac {3 b \sec ^{\frac {3}{2}}(c+d x) \sqrt {b \sec (c+d x)} \sin (c+d x)}{8 d}+\frac {b \sec ^{\frac {7}{2}}(c+d x) \sqrt {b \sec (c+d x)} \sin (c+d x)}{4 d} \]

[Out]

3/8*b*sec(d*x+c)^(3/2)*sin(d*x+c)*(b*sec(d*x+c))^(1/2)/d+1/4*b*sec(d*x+c)^(7/2)*sin(d*x+c)*(b*sec(d*x+c))^(1/2
)/d+3/8*b*arctanh(sin(d*x+c))*(b*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {17, 3853, 3855} \begin {gather*} \frac {b \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x) \sqrt {b \sec (c+d x)}}{4 d}+\frac {3 b \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {b \sec (c+d x)}}{8 d}+\frac {3 b \sqrt {b \sec (c+d x)} \tanh ^{-1}(\sin (c+d x))}{8 d \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(7/2)*(b*Sec[c + d*x])^(3/2),x]

[Out]

(3*b*ArcTanh[Sin[c + d*x]]*Sqrt[b*Sec[c + d*x]])/(8*d*Sqrt[Sec[c + d*x]]) + (3*b*Sec[c + d*x]^(3/2)*Sqrt[b*Sec
[c + d*x]]*Sin[c + d*x])/(8*d) + (b*Sec[c + d*x]^(7/2)*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/(4*d)

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \sec ^{\frac {7}{2}}(c+d x) (b \sec (c+d x))^{3/2} \, dx &=\frac {\left (b \sqrt {b \sec (c+d x)}\right ) \int \sec ^5(c+d x) \, dx}{\sqrt {\sec (c+d x)}}\\ &=\frac {b \sec ^{\frac {7}{2}}(c+d x) \sqrt {b \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {\left (3 b \sqrt {b \sec (c+d x)}\right ) \int \sec ^3(c+d x) \, dx}{4 \sqrt {\sec (c+d x)}}\\ &=\frac {3 b \sec ^{\frac {3}{2}}(c+d x) \sqrt {b \sec (c+d x)} \sin (c+d x)}{8 d}+\frac {b \sec ^{\frac {7}{2}}(c+d x) \sqrt {b \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {\left (3 b \sqrt {b \sec (c+d x)}\right ) \int \sec (c+d x) \, dx}{8 \sqrt {\sec (c+d x)}}\\ &=\frac {3 b \tanh ^{-1}(\sin (c+d x)) \sqrt {b \sec (c+d x)}}{8 d \sqrt {\sec (c+d x)}}+\frac {3 b \sec ^{\frac {3}{2}}(c+d x) \sqrt {b \sec (c+d x)} \sin (c+d x)}{8 d}+\frac {b \sec ^{\frac {7}{2}}(c+d x) \sqrt {b \sec (c+d x)} \sin (c+d x)}{4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 64, normalized size = 0.58 \begin {gather*} \frac {(b \sec (c+d x))^{3/2} \left (3 \tanh ^{-1}(\sin (c+d x))+\sec (c+d x) \left (3+2 \sec ^2(c+d x)\right ) \tan (c+d x)\right )}{8 d \sec ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(7/2)*(b*Sec[c + d*x])^(3/2),x]

[Out]

((b*Sec[c + d*x])^(3/2)*(3*ArcTanh[Sin[c + d*x]] + Sec[c + d*x]*(3 + 2*Sec[c + d*x]^2)*Tan[c + d*x]))/(8*d*Sec
[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [A]
time = 35.19, size = 131, normalized size = 1.19

method result size
default \(-\frac {\left (3 \ln \left (-\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \left (\cos ^{4}\left (d x +c \right )\right )-3 \ln \left (-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \left (\cos ^{4}\left (d x +c \right )\right )-3 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-2 \sin \left (d x +c \right )\right ) \cos \left (d x +c \right ) \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \left (\frac {b}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}}}{8 d}\) \(131\)
risch \(-\frac {i b \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \sqrt {\frac {b \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left (3 \,{\mathrm e}^{6 i \left (d x +c \right )}+11 \,{\mathrm e}^{4 i \left (d x +c \right )}-11 \,{\mathrm e}^{2 i \left (d x +c \right )}-3\right )}{4 \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3} d}-\frac {3 b \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \sqrt {\frac {b \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) \cos \left (d x +c \right )}{4 d}+\frac {3 b \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \sqrt {\frac {b \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) \cos \left (d x +c \right )}{4 d}\) \(260\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(7/2)*(b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/8/d*(3*ln(-(cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))*cos(d*x+c)^4-3*ln(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))*c
os(d*x+c)^4-3*cos(d*x+c)^2*sin(d*x+c)-2*sin(d*x+c))*cos(d*x+c)*(1/cos(d*x+c))^(7/2)*(b/cos(d*x+c))^(3/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 1742 vs. \(2 (92) = 184\).
time = 0.69, size = 1742, normalized size = 15.84 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(7/2)*(b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/16*(12*(b*sin(8*d*x + 8*c) + 4*b*sin(6*d*x + 6*c) + 6*b*sin(4*d*x + 4*c) + 4*b*sin(2*d*x + 2*c))*cos(7/2*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 44*(b*sin(8*d*x + 8*c) + 4*b*sin(6*d*x + 6*c) + 6*b*sin(4*d*x + 4
*c) + 4*b*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 44*(b*sin(8*d*x + 8*c) + 4*
b*sin(6*d*x + 6*c) + 6*b*sin(4*d*x + 4*c) + 4*b*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c))) - 12*(b*sin(8*d*x + 8*c) + 4*b*sin(6*d*x + 6*c) + 6*b*sin(4*d*x + 4*c) + 4*b*sin(2*d*x + 2*c))*cos(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 3*(b*cos(8*d*x + 8*c)^2 + 16*b*cos(6*d*x + 6*c)^2 + 36*b*cos(
4*d*x + 4*c)^2 + 16*b*cos(2*d*x + 2*c)^2 + b*sin(8*d*x + 8*c)^2 + 16*b*sin(6*d*x + 6*c)^2 + 36*b*sin(4*d*x + 4
*c)^2 + 48*b*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 16*b*sin(2*d*x + 2*c)^2 + 2*(4*b*cos(6*d*x + 6*c) + 6*b*cos(4
*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)*cos(8*d*x + 8*c) + 8*(6*b*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)
*cos(6*d*x + 6*c) + 12*(4*b*cos(2*d*x + 2*c) + b)*cos(4*d*x + 4*c) + 8*b*cos(2*d*x + 2*c) + 4*(2*b*sin(6*d*x +
 6*c) + 3*b*sin(4*d*x + 4*c) + 2*b*sin(2*d*x + 2*c))*sin(8*d*x + 8*c) + 16*(3*b*sin(4*d*x + 4*c) + 2*b*sin(2*d
*x + 2*c))*sin(6*d*x + 6*c) + b)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) + 3*(b*co
s(8*d*x + 8*c)^2 + 16*b*cos(6*d*x + 6*c)^2 + 36*b*cos(4*d*x + 4*c)^2 + 16*b*cos(2*d*x + 2*c)^2 + b*sin(8*d*x +
 8*c)^2 + 16*b*sin(6*d*x + 6*c)^2 + 36*b*sin(4*d*x + 4*c)^2 + 48*b*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 16*b*si
n(2*d*x + 2*c)^2 + 2*(4*b*cos(6*d*x + 6*c) + 6*b*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)*cos(8*d*x + 8*c)
 + 8*(6*b*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)*cos(6*d*x + 6*c) + 12*(4*b*cos(2*d*x + 2*c) + b)*cos(4*
d*x + 4*c) + 8*b*cos(2*d*x + 2*c) + 4*(2*b*sin(6*d*x + 6*c) + 3*b*sin(4*d*x + 4*c) + 2*b*sin(2*d*x + 2*c))*sin
(8*d*x + 8*c) + 16*(3*b*sin(4*d*x + 4*c) + 2*b*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + b)*log(cos(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 12*(b*cos(8*d*x + 8*c) + 4*b*cos(6*d*x + 6*c) + 6*b*cos(4*d*x +
 4*c) + 4*b*cos(2*d*x + 2*c) + b)*sin(7/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 44*(b*cos(8*d*x + 8*c
) + 4*b*cos(6*d*x + 6*c) + 6*b*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)*sin(5/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c))) + 44*(b*cos(8*d*x + 8*c) + 4*b*cos(6*d*x + 6*c) + 6*b*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*
c) + b)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 12*(b*cos(8*d*x + 8*c) + 4*b*cos(6*d*x + 6*c) +
 6*b*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sqrt(b
)/((2*(4*cos(6*d*x + 6*c) + 6*cos(4*d*x + 4*c) + 4*cos(2*d*x + 2*c) + 1)*cos(8*d*x + 8*c) + cos(8*d*x + 8*c)^2
 + 8*(6*cos(4*d*x + 4*c) + 4*cos(2*d*x + 2*c) + 1)*cos(6*d*x + 6*c) + 16*cos(6*d*x + 6*c)^2 + 12*(4*cos(2*d*x
+ 2*c) + 1)*cos(4*d*x + 4*c) + 36*cos(4*d*x + 4*c)^2 + 16*cos(2*d*x + 2*c)^2 + 4*(2*sin(6*d*x + 6*c) + 3*sin(4
*d*x + 4*c) + 2*sin(2*d*x + 2*c))*sin(8*d*x + 8*c) + sin(8*d*x + 8*c)^2 + 16*(3*sin(4*d*x + 4*c) + 2*sin(2*d*x
 + 2*c))*sin(6*d*x + 6*c) + 16*sin(6*d*x + 6*c)^2 + 36*sin(4*d*x + 4*c)^2 + 48*sin(4*d*x + 4*c)*sin(2*d*x + 2*
c) + 16*sin(2*d*x + 2*c)^2 + 8*cos(2*d*x + 2*c) + 1)*d)

________________________________________________________________________________________

Fricas [A]
time = 3.30, size = 236, normalized size = 2.15 \begin {gather*} \left [\frac {3 \, b^{\frac {3}{2}} \cos \left (d x + c\right )^{3} \log \left (-\frac {b \cos \left (d x + c\right )^{2} - 2 \, \sqrt {b} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b}{\cos \left (d x + c\right )^{2}}\right ) + \frac {2 \, {\left (3 \, b \cos \left (d x + c\right )^{2} + 2 \, b\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{16 \, d \cos \left (d x + c\right )^{3}}, -\frac {3 \, \sqrt {-b} b \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{b}\right ) \cos \left (d x + c\right )^{3} - \frac {{\left (3 \, b \cos \left (d x + c\right )^{2} + 2 \, b\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{8 \, d \cos \left (d x + c\right )^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(7/2)*(b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/16*(3*b^(3/2)*cos(d*x + c)^3*log(-(b*cos(d*x + c)^2 - 2*sqrt(b)*sqrt(b/cos(d*x + c))*sqrt(cos(d*x + c))*sin
(d*x + c) - 2*b)/cos(d*x + c)^2) + 2*(3*b*cos(d*x + c)^2 + 2*b)*sqrt(b/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x
 + c)))/(d*cos(d*x + c)^3), -1/8*(3*sqrt(-b)*b*arctan(sqrt(-b)*sqrt(b/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x
 + c)/b)*cos(d*x + c)^3 - (3*b*cos(d*x + c)^2 + 2*b)*sqrt(b/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*
cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(7/2)*(b*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(7/2)*(b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c))^(3/2)*sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(7/2),x)

[Out]

int((b/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(7/2), x)

________________________________________________________________________________________